Chaos and complexity from quantum neural network. A study with diffusion metric in machine learning

نویسندگان

چکیده

A bstract In this work, our prime objective is to study the phenomena of quantum chaos and complexity in machine learning dynamics Quantum Neural Network (QNN). Parameterized Circuits (PQCs) hybrid quantum-classical framework introduced as a universal function approximator perform optimization with Stochastic Gradient Descent (SGD). We employ statistical differential geometric approach theory QNN. The evolution parametrized unitary operators correlated trajectory parameters Diffusion metric. establish version Complexity Chaos terms physically relevant quantities, which are not only essential determining stability, but also providing very significant lower bound generalization capability explicitly prove that when system executes limit cycles or oscillations phase space, QNN maximized. Finally, we have determined on variance steady state condition using Cauchy Schwartz Inequality.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

‏‎a comparative study of language learning strategies employmed by bilinguals and monolinguals with reference to attitudes and motivation‎‏

هدف از این تحقیق بررسی برخی عوامل ادراکی واحساسی یعنی استفاده از شیوه های یادگیری زبان ، انگیزه ها ونگرش نسبت به زبان انگلیسی در رابطه با زمینه زبانی زبان آموزان می باشد. هدف بررسی این نکته بود که آیا اختلافی چشمگیر میان زبان آموزان دو زبانه و تک زبانه در میزان استفاده از شیوه های یادگیری زبان ، انگیزه ها نگرش و سطح مهارت زبانی وجود دارد. همچنین سعی شد تا بهترین و موثرترین عوامل پیش بینی کننده ...

15 صفحه اول

Chaos/Complexity Theory and Education

Sciences exist to demonstrate the fundamental order underlying nature. Chaos/complexity theory is a novel and amazing field of scientific inquiry. Notions of our everyday experiences are somehow in connection to the laws of nature through chaos/complexity theory’s concerns with the relationships between simplicity and complexity, between orderliness and randomness (Retrieved from http://www.inc...

متن کامل

A diffusion-neural-network for learning from small samples

Neural information processing models largely assume that the patterns for training a neural network are sufficient. Otherwise, there must exist a non-negligible error between the real function and the estimated function from a trained network. To reduce the error, in this paper, we suggest a diffusion-neural-network (DNN) to learn from a small sample consisting of only a few patterns. A DNN wit...

متن کامل

Neural Network Learning Based on Chaos

Chaos and fractals are novel fields of physics and mathematics showing up a new way of universe viewpoint and creating many ideas to solve several present problems. In this paper, a novel algorithm based on the chaotic sequence generator with the highest ability to adapt and reach the global optima is proposed. The adaptive ability of proposal algorithm is flexible in 2 steps. The first one is ...

متن کامل

Quantum Neural Machine Learning - Backpropagation and Dynamics

The current work addresses quantum machine learning in the context of Quantum Artificial Neural Networks such that the networks’ processing is divided in two stages: the learning stage, where the network converges to a specific quantum circuit, and the backpropagation stage where the network effectively works as a self-programing quantum computing system that selects the quantum circuits to sol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of High Energy Physics

سال: 2021

ISSN: ['1127-2236', '1126-6708', '1029-8479']

DOI: https://doi.org/10.1007/jhep04(2021)138